a∈G,n∈Z, 则 an=⎩⎨⎧ean−1a(a−1)m,n<0n=0n>0n=−m 只有群中元素可以定义负整数次幂. 幂运算规则 ∀a∈G,(a−1)−1=a, ∀a,b∈G,(ab)−1=b−1a−1, ∀a∈G,anam=an+m,n,m∈Z, ∀a∈G,(an)m=anm,n,m∈Z, 若 G 为交换群, 则 (ab)n=anbn.